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Abstract. This paper first presents cyclic test results and the application of the 

proposed sandwiched buckling-restrained brace (BRB). The proposed BRB can 

be easily disassembled in the field. This provides an opportunity for inspection 

of the core after a large earthquake. The mechanics and cyclic behavior of a 

novel steel dual-core self-centering brace (SCB) are then proposed and 

introduced, followed by the testing of a dual-core SCB in order to evaluate its 

cyclic performance. Both braces achieve an excellent target lateral drift 

performance of up to 2.5%, thus satisfying the seismic requirement by the AISC 

Seismic Provisions 2010.  
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1 Introduction 

This paper presents cyclic test results of two energy-dissipating braces that are 

used for enhancing earthquake-resistance of structures. The first brace is called 

a sandwiched buckling-restrained brace (BRB). This is comparable to 

conventional BRBs that have a steel core inserted into a restraining member, 

however in this case, bolts are used to sandwich a core between a pair of 

restraining members, which enables fast assemblage and provides opportunities 

for inspecting the core after large earthquakes [1].  

The second brace is a novel steel dual-core self-centering brace (SCB), which 

was developed in Taiwan by applying post-tensioning (PT) technology in a 

single brace to reduce the residual drift of structures. A novel dual-core SCB 

[2,3] consists of conventional steel bracing members, energy dissipative 

devices, and two sets of tensioning elements that are in a parallel arrangement to 

double the axial deformation capacity of the SCED brace [4]. One 5350 mm-

long dual-core SCB was tested to evaluate its seismic performances; the results 
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are presented in this paper. The seismic demands on either the BRB or dual-core 

SCB’s steel frames, under different ground motions, can be found elsewhere [5].  

2 Sandwiched Buckling-Restrained Brace 

A sandwiched BRB (Figure 1) is composed of a core plate and two identical 

restraining members, which are formed by welding a steel channel to a flat plate 

(face plate) and then filled with concrete or mortar. The benefit of using the 

proposed BRB is the ability to disassemble the brace, which not only means that 

the core plate can be replaced independently of the restraining members, but 

also provides an opportunity for inspection of the core.   

The maximum compressive load is based on a limit state of BRB global 

stability and is estimated from equation [1] 
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where i is the initial imperfection at the center of the BRB, g is the gap between 

the core plate and restraining member, e is the eccentricity at the BRB end, Pe is 

the Euler buckling load of the restraining member, and  is the plastic moment 

capacity of two restraining members.  

The test program consisted of cyclic tests of four BRBs. BRB 1 had the core 

length of 6550 mm, and BRB 2-4 (Figure 1) had the core length of 1720 mm, 

with a larger cross-sectional area than the BRB 1. BRBs 2 and 4 used a steel 

channel 180604.54.5 and a flat plate to form a restraining member, which 

was filled with mortar. BRB 3 used a steel channel 180754.54.5 and a flat 

plate to form a restraining member without using mortar inside the channel. 

After BRB 2 completed its tests, BRB 4 reused the restraining member of BRB 

2 for subsequent tests. In this way, the performance of the existing-restraining 

member after replacing a new core can be examined. ASTM A572 GR.50 steel 

was specified for the core plate, side plate, and face plate. The specified 28-day 

mortar strength was 48 MPa. The ratio of Pmax,g/Py was 2.7-2.9 for BRBs 1-4, 

where Py is the core plate yield load. These values were larger than the 

suggested value of 2.5 [1], so no global buckling in BRBs 1-4 were expected 

before the core plate reached its ultimate compressive load, Pu (=βFuAc) where β 

is the compression strength adjustment factor and a value of 1.15 is used to 

estimate the maximum compressive force. Tensile strength Fu was obtained 

from the material tensile coupon test. BRBs 1-3 were subjected to the 

prescribed loading protocol in Section T6 of AISC seismic provisions [6] until 

the specimens failed or a limit state of the test setup was reached. BRB 4 was 
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tested using a near-field loading protocol and then an AISC loading protocol 

until failure.  

2.1 Test Results of BRBs 

Figure 2 shows the measured axial force versus axial displacement for only 

BRBs 3-4. BRB 3 was tested in the setup (Figure 1(a)) and exhibited stable 

hysteretic behaviors up to a maximum core strain of 3.8% (Figure 2). A fracture 

of the core plate for BRB 3 was observed during the third cycle, at a core strain 

of 3.8% (Figure 1(b)). The cumulative plastic ductility after the test was 856 for 

BRB 3, exceeding the value of 200 specified by AISC seismic provisions [6]. It 

indicates that the sandwiched BRB without concrete in the steel channel does 

not affect the performance of the BRB. BRB 4 reused the undamaged 

restraining member of BRB 2 and a new steel core. Figure 2 shows stable 

hysteretic behavior up to the maximum core strain of 2.5% in tension and 4.6% 

in compression, which was conducted based on a near-field loading protocol. 

No yielding or buckling of the restraining member was observed after the Phase 

I test.  

 

(a) BRBs 2-4 

 

(b) Fracture (BRB 3, εmax=3.8%) 

Figure 1 BRB Size and failure mode. 
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The sandwiched BRB has recently been used as earthquake-resisting members 

in Kaohsiung city library, Taiwan and Gansu science museum, China (Figure 3). 

These two new public buildings located in high-seismic areas of Taiwan and 

China, respectively, are under construction and will be completed in 2015. The 

axial capacity of the BRBs used in these two buildings ranges from 2000 kN to 

13000 kN.   
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Figure 2 Hysteretic responses of BRBs. 

 
(a) Kaohsiung City Library (Taiwan)            (b) Gansu Museum (China) 

Figure 3 Application of sandwiched BRBs in Taiwan and China. 

3 Dual-Core Self-Centering Brace (SCB) 

Figure 4 presents the proposed dual-core SCB, which consists of three steel 

bracing members, two PT element sets, energy dissipation devices, and end 

plates. An energy dissipative device, which is located at one end of the brace, is 

activated by the relative motion is induced between the first core and outer box. 

All bracing members, end plates, and tendons in the dual-core SCB are arranged 

so that a relative motion is induced between these bracing members and causes 

serial elongation of the inner and outer tendons to achieve the desired brace 

elongation or shortening, which is always two times that of the tendon 

elongation.  

3.1 Kinematics and Mechanics 

Figure 5 presents the kinematics and hysteretic response of the dual-core SCB. 

Once the activation load, Fdt, of a dual-core SCB is exceeded, the inner end 
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plate moves in the same direction with respect to the outer end plate, resulting 

in a brace deformation two times that of the tendon elongation  (Figure 5(a)). 

The elongation in each tendon set  causes the axial deformation of 2 in the 

dual-core SCB. The brace returns to its original position when the load is 

removed (Figure 5(b)).  

4 Tests of the Dual-Core SCB 

The test program consisted of cyclic tests of one dual-core SCB specimen. The 

dual-core SCB had a first core of H2302101515 mm, two second cores of 

T1801808 mm, and an outer box tube of T3404408 mm. The specimen 

had eight 22 mm-diameter E-glass fiber-reinforced-polymer (FRP) tendons as 

tensioning elements. The initial PT force in the brace was set to 260 kN. The 

friction devices placed on one end of the braces was set to produce friction 

forces of 250 kN. The specimen was fabricated by a local steel fabricator in 

Taiwan and post-tensioned and tested at the NCREE, Taiwan (Figure 6(a)).  

  

(a) Overall View                                        (b) Section View 

Figure 4 A proposed dual-core SCB. 

  

(a)

(b)

(c)

(d)

F
o
rc

e

Displacement  

                      (a) Brace Kinematics                                 (b) Hysteretic Response 

Figure 5 Kinematics and hysteretic response of the dual-core SCB. 
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4.1 Test Results 

The dual-core SCB specimen was subjected to four loading phases. The 

specimen was first tested to a drift of 0.5% in Phase 1 before stressing bolts in 

the friction device to evaluate the initial PT force. In the following loading 

phases, eight bolts were used to stress the friction device. The specimen was 

then subjected to the standard loading protocol (Phase 2) specified in Section 

T6 of the AISC seismic provisions [6] for evaluating the BRB performance. The 

specimen was subjected to an additional fifteen low-cycle fatigue loading at a 

column drift of 1.5% (Phase 3). Finally, the specimen was reloaded under the 

standard loading protocol beyond the target drift of 2% until failure (Phase 4). 

The dual-core SCB in Phase 2 test developed a stable energy dissipation and 

self-centering property up to an interstory drift of 2%. The specimen under 

fifteen low-cycle fatigue loading tests at a 1.5% drift also showed replicable 

responses with very minor differences in the hysteretic loops (Figure 6(b)). 

After a complete loading protocol in the Phase 3 test, the specimen was 

reloaded with AISC loading protocol to a drift of 2.5% (Phase 4). When the 

specimen was loaded in 2.5% drift cycles (Figure 6(a)), the tendon strain was 

1.23%, lower than its 1.47% capacity. Therefore, no tensioning elements were 

damaged during the test, and the maximum axial force in the brace was 1300 

kN (Figure 6(c)).  
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(a) 2.5% drift                        (b) Phase 3 (15 cycles)                        (c) Phase 4 

Figure 6 Performance of the proposed dual-core SCB. 

5 Conclusions 

This work presents cyclic test results of the sandwiched buckling-restrained 

brace (BRB) and the dual-core self-centering brace (SCB). As long as the 

sandwiched BRB’s design followed the design procedure [1], it maintained 

good seismic performance, up to a maximum compressive core strain of 4.6% in 

the cyclic loading. BRBs 2 and 3 had similar behaviors, indicating that concrete 

infill is not needed for the restraining member of the sandwiched BRB.  

The dual-core SCB was developed to double the elongation capacity of the 

SCED brace and have the self-center response during the cyclic loading, 
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eliminating the residual deformation as seen in the BRBs. The dual-core SCB 

specimen under cyclic loading showed a good self-centering hysteresis 

response, with a maximum interstory drift of 2.5%.  
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